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So-called ‘moonpools’ are vertical openings through the deck and hull of ships or
barges, used for marine and offshore operations, such as pipe laying or recovery of
divers. In the present study rectangular moonpools of large horizontal dimensions
are considered. The natural modes of oscillation of the inner free surfaces are
determined, under the assumption of infinite water depth and infinite length and
beam of the barges that contain the moonpools. The problem is treated in two
and three dimensions, via linearized potential flow theory. Results are given for the
natural frequencies and the associated shapes of the free surface, for wide ranges of
the geometric parameters. Simple quasi-analytical approximations are derived that
yield the natural frequencies. The most striking result is that the natural frequencies
of the longitudinal sloshing modes increase without bounds when both the draught
and the width decrease to zero, the length of the moonpool being kept constant. As
a corollary the problem of waves travelling in a channel through a rigid ice sheet is
addressed and their dispersion equation is derived. The same behaviour is obtained:
the waves travel increasingly faster as both the draught and the width of the channel
are reduced.

1. Introduction
The starting point of this analysis is a new barge concept, for offshore oil production

in mild seas and large water depths. The oil effluent flows up from the seabed
through steel risers, tensioned by buoyancy elements, that terminate within a large
central opening in the barge: the ‘well-bay’. Typical dimensions of the well-bay, or
‘moonpool’, are 80 m long and 20 m wide, the barge itself being about three times as
long and as wide. The draught can be quite shallow: 5 or 6 m when no storage or
processing equipment is required.

A hydrodynamic problem encountered with this concept is the water motion that
takes place in the moonpool, under wave-induced pressures and barge motion. This
water motion mostly occurs at the natural modes of the moonpool: the sloshing
modes, back and forth in between the vertical walls (like in a tank), and the piston
mode, where the water inside the moonpool heaves up and down more or less like a
rigid body.

Predictive tools are needed, at the design stage, to calculate the amplitude of these
resonant modes, and, beforehand, to precisely locate their frequencies with regard
to the frequencies of the most energetic waves. For this state-of-the-art diffraction
radiation codes were used and they revealed some hitherto unsuspected features of
the resonant frequencies of the longest sloshing modes: their frequencies turned out
to be much greater than expected. For instance, with a 80× 20× 5 m moonpool, the
natural period of the first longitudinal mode is less than 7.5 s, corresponding to a
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wavelength of 85 m in an unbounded ocean, nowhere near twice the length of the
moonpool!

It is this problem, of calculating the natural frequencies, and associated free surface
shapes, that we are concerned with in this paper. It is solved under the simplifying
assumption that the length and beam of the barge are much larger than the length
and width of the moonpool, so they are taken to be infinite. As a result the fluid
domain divides into two subdomains: the moonpool, extending vertically from z = 0
to z = h, where h is the draught, of length l and width b, and the semi-infinite half
space z 6 0. The barge is assumed to be motionless.

The problem is tackled via linearized potential theory. In the lower subdomain, the
velocity potential Φ−(x, y, z, t) obeys the Laplace equation, Neumann conditions on
z = 0, and decaying conditions at infinity. When Φ−z (x, y, 0, t) = (∂/∂z)Φ−(x, y, 0, t) is
given on the common boundary with the moonpool, Φ− is obtained everywhere in
z 6 0 as

Φ−(x, y, z, t) =
1

2π

∫ l

0

dx′
∫ b

0

dy′
Φ−z (x′, y′, 0, t)√

(x− x′)2 + (y − y′)2 + z2
. (1)

The matching conditions of the potentials Φ+ and Φ− are that they be equal on
the common boundary: Φ+(x, y, 0, t) = Φ−(x, y, 0, t), and their normal derivatives as
well: Φ+

z (x, y, 0, t) = Φ−z (x, y, 0, t). Hence Φ+ and Φ+
z satisfy the equation

Φ+(x, y, 0, t) =
1

2π

∫ l

0

dx′
∫ b

0

dy′
Φ+
z (x′, y′, 0, t)√

(x− x′)2 + (y − y′)2
. (2)

This is an adequate boundary condition to solve for the flow inside the moonpool,
with no longer any need to bother about the lower fluid subdomain. When the
draught h is taken as equal to zero, combining equation (2) with the free surface
condition readily results in a Fredholm equation for Φ+ at the free surface. Equations
(1) and (2) relate to the three-dimensional problem, which is considered in § 3.

Section 2 is devoted to the two-dimensional case, in a vertical plane in the transverse
direction to the barge. Hopefully this is an appropriate simplification to study the
piston mode and the transverse sloshing modes when the moonpool is elongated. It
is also a problem for which there is abundant literature in the zero draught limit
(Henrici, Troesch & Wuytack 1970; Miles 1972; Troesch & Troesch 1972; Troesch
1973; see also Fox & Kuttler 1983). These researchers were considering tanks with
lids on the free surface except in a central area, circular or strip-shaped, and they
were looking for asymptotic limits of the sloshing frequencies as the walls were taken
farther and farther away. As a consequence of there being walls, however remote,
there is no mass flux through the aperture. In our case there is a free surface at either
side of the barge, so there can be a non-zero mass flux through the moonpool, the
most evident manifestation being the piston mode. To mimic the effect of the outer
free surface, we locate two sinks symmetrically on the horizontal axis (at keel level),
at distances ±λB/2 from the barge centre (B being the beam of the barge and λ
some constant larger than 1), so that the total mass flux, at any instant, through the
free surface and into the sinks, is zero. Our results become comparable with those of
Henrici et al., Miles and Troesch in the limit when λ goes to infinity and h goes to
zero.

Eigenfunction expansions are used to solve the boundary value problem inside
the moonpool. Favourable comparisons are made with Miles’ results in the (λ → ∞,
h → 0) limit. Natural frequencies of the first sloshing mode and of the piston mode
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are given as functions of the draught-to-width ratio h/b, and they are compared with
simple analytic expressions, based on so-called single mode approximations. Shapes
of the free surface are given for different values of the h/b ratio.

Section 3 is devoted to the three-dimensional case. Again our theory differs from
those of Miles and the other investigators in that we allow for a non-zero mass flux
through the moonpool. This means that the velocity potential, in the lower half-space,
behaves like R−1 at infinity, whereas in Miles’ case it behaves like R−2. The same
technique as in the two-dimensional case is used to set up an eigenvalue problem,
the resolution of which gives the natural frequencies and associated eigenvectors.
Illustrative results are given for the piston mode and for the first longitudinal and
transverse sloshing modes. Single mode approximations are derived that yield the
frequencies of the different modes as simple analytic expressions of the two geometric
parameters h/l and h/b. A striking result is that the frequencies of the longitudinal
sloshing modes increase unboundedly as h/l and b/l both go to zero, the length l
being kept constant.

Finally consideration is given to the infinitely long moonpool case, equivalent to a
channel in a rigid ice sheet. Given progressive waves with wavenumber k0 along the
channel, an eigenvalue problem is set, that yields their frequency ω0, the geometric
parameters k0b and k0h being given. It looks as though this problem had never been
studied before in infinite water-depth (there is some literature for shallow water, e.g.
see Marchenko 1997). Associated shapes of the free surface envelope (in a transverse
cut) are given.

2. Two-dimensional case
2.1. Theory

Because we will for the moment use complex variables, we take x as the horizontal
coordinate and y as the vertical one. The coordinate system is first centred at the
middle of the moonpool base, which extends from x = −b/2 to x = b/2. We first
assume the beam of the barge to be infinite. Hence the velocity potential in the lower
subdomain y 6 0 satisfies the no-flow condition for |x| > b/2, y = 0, and matching
conditions with the velocity potential inside the moonpool for |x| 6 b/2, y = 0. If
Φ−y (x, 0, t) is the vertical velocity on this segment, then the complex velocity potential
in the lower half-plane is given by

f−(z, t) = −1

π

∫ b/2

−b/2
Φ−y (ζ, 0, t) ln (z − ζ) dζ (3)

where z = x+ i y (see e.g. Newman 1977, ch. 5.7).
As argued in the Introduction this relationship means that, when there is a non-zero

mass flux through the moonpool base, the potential (and the pressure) is singular
at infinity. This means that our idealization of infinite beam is non-physical. What
happens in practice is that the water flows around the keel, up to the free surface
(and radiates waves). To model this effect we put two sinks some distance away from
the hull, at x = ±λB/2 = ±H/2, where B is the beam and λ is somewhat larger than
1. The velocity potential in the lower half-plane now is written

f−(z, t) = −1

π

∫ b/2

−b/2
Φ−y (ζ, 0, t)[ln (z − ζ)− 1

2
ln (z −H/2)− 1

2
ln (z +H/2)] dζ. (4)
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Φ− on the cut [−b/2 b/2] is given by

Φ−(x, 0, t) = −1

π

∫ b/2

−b/2
Φ−y (ζ, 0, t)[ln |x− ζ| − 1

2
ln (H/2− x)− 1

2
ln (H/2 + x)] dζ

or, more simply, with an error O(b2/H2)

Φ−(x, 0, t) = −1

π

∫ b/2

−b/2
Φ−y (ζ, 0, t) ln

|x− ζ|
H/2

dζ. (5)

The matching conditions on the cut are that the velocity potentials and their vertical
derivatives are equal. Hence Φ+ inside the moonpool satisfies the boundary condition

Φ+(x, 0, t) = −1

π

∫ b/2

−b/2
Φ+
y (ζ, 0, t) ln

|x− ζ|
H/2

dζ. (6)

We now forget about the lower half-plane and concentrate on the flow within the
moonpool. Shifting the coordinate system to the corner, we are looking for the eigen
solutions of the boundary value problem

∆ϕ = 0, 0 6 x 6 b, 0 6 y 6 h, (7)

ϕx = 0, x = 0, x = b, (8)

g ϕy − ω2ϕ = 0, y = h, (9)

ϕ(x, 0) = −1

π

∫ b

0

ϕy(ζ, 0) ln
|x− ζ|
H/2

dζ, y = 0, (10)

where

Φ+(x, y, t) = Re {ϕ(x, y) e−iωt}. (11)

The domain considered being rectangular in x and y, we look for solutions of the
form

ϕ(x, y) = A0 + B0 y/h+

∞∑
n=1

(An cosh λn y + Bn sinh λn y) cos λn x (12)

(with λn = n π/b) so that the Laplace equation and the no-flow conditions on the
vertical walls are fulfilled.

The boundary condition on the ficticious bottom gives

A0 +

∞∑
n=1

An cos λn x = −1

π

∫ b

0

(
B0/h+

∞∑
n=1

λn Bn cos λn ζ

)
ln
|x− ζ|
H/2

dζ.

Integrating each side in x from 0 to b gives

A0 =
1

π

b

h
B0

(
3

2
+ ln

H

2b

)
− b

π3

∞∑
n=1

λnBn

∫ π

0

∫ π

0

cos n v ln |u− v| du dv. (13)

Similarly multiplying both sides with cos λm x and integrating gives

Am = − 2b

π3h
B0

∫ π

0

∫ π

0

cosmu ln |u− v| du dv

−2b

π3

∞∑
n=1

λnBn

∫ π

0

∫ π

0

cosmu cos n v ln |u− v| du dv (14)
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or, in vector form

A = AB · B (15)

with A = (A0, A1, . . .), B = (B0, B1, . . .).
Considering then the free surface condition we obtain the following equations

g

h
B0 = ω2(A0 + B0), (16)

g λn(An tanh λn h+ Bn) = ω2(An + Bn tanh λnh), (17)

which, upon combination with equation (15), give the eigenvalue problem

[D1 · AB + D2]B = ω2 [AB + D3]B (18)

where D1,D2,D3 are diagonal matrices.
For numerical resolution this infinite system is truncated to some finite order N. A

standard method is then applied to obtain the eigenfrequencies ωi and eigenvectors
Bi. Convergence is assessed by repeating the computations for increasing values of
the truncation order N.

The numerical evaluation of the integrals that appear in equations (13) and (14)
is detailed in the Appendix, §A.1. It turns out (as is obvious from symmetry con-
siderations) that the eigenmodes separate into odd and even modes. The odd modes
involve the coefficients A2i+1, B2i+1, the even ones A2i, B2i (i starting from zero). It is
only for the even ones that there is a non-zero mass flux through the cut, and that
the choice made for H matters.

2.2. Single mode approximations

Due to the boundary condition at the bottom, and unlike in a closed rectangular
tank, there are couplings, between the different coefficients, expressed by equations
(13) and (14). These couplings disappear as the draught h increases with respect to
the width b. At small values of h/b, as will be seen, they strongly affect the shape of
the free surface, which deviates from a pure sinusoidal function, but affect less the
value of the natural frequency. As a result, simple approximations can be derived by
retaining, in equations (13), (14), (16), (17), only one couple (An, Bn) and setting all
the others equal to zero. Then the following expressions are obtained:

Piston mode

In this approximation one assumes the water inside the moonpool to be a solid
body. The natural frequency is obtained as

ω0 '
√

g

h+ (b/π)( 3
2

+ ln (H/2b))
. (19)

Sloshing modes

One obtains

ω2
n ' g λn 1 + Jn tanh λnh

Jn + tanh λnh
(20)

where

Jn = −2n

b2

∫ b

0

∫ b

0

cos λnx cos λnζ ln |x− ζ| dx dζ = −2 n

π2
Inn,

Inn being given in the Appendix, §A.1.
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Figure 1. Two-dimensional case. Mode 1. h/b = 0.0001. Convergence of the natural frequency
ω2

1 b/(2g) with respect to the truncation order.

Numerical evaluation gives J1 = 0.774, J2 = 0.903, J3 = 0.931, J4 = 0.950, J5 =
0.959, etc. These values are always less than 1. Hence one can introduce βn such that

Jn = tanh βn. (21)

The frequency is now given by

ω2
n ' g λn coth (λnh+ βn). (22)

One gets, for the first three modes

ω2
1 ' g

π

b
coth

(
πh

b
+ 1.030

)
, (23)

ω2
2 ' 2 g

π

b
coth

(
2πh

b
+ 1.488

)
, (24)

ω2
3 ' 3 g

π

b
coth

(
3πh

b
+ 1.666

)
. (25)

2.3. Results

We first give some results that illustrate the rate of convergence with respect to the
truncation order N of the series. We take a very shallow draught case h/b = 0.0001,
so we expect to get results in close agreement with the ones given by Miles (1972),
who treats the zero draught case. Figure 1 shows the frequency of the first sloshing
mode (antisymmetric), in the form ω2

1 b/(2 g), plotted against 1/N. For h = 0 Miles
(1972) obtains 2.006119. Our values converge toward 2.006, which is obtained for
N > 16.
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Figure 2. Two-dimensional case. Mode 1. h/b = 0.0001. Free surface shapes for different
truncation orders.
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Figure 3. Two-dimensional case. Mode 1. Free surface shape for different draught/width ratios.

Figure 2 shows the shape of the free surface in the left-hand half of the moonpool,
obtained with different truncation orders. The convergence is slower than for the
frequency. This is partly linked to the fact that, in the limit h/b = 0, the slope
of the free surface at the walls is not zero any more. For larger values of h/b
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Figure 4. Two-dimensional case. Mode 1. Natural frequency ω2
1 b/(2g) versus h/b, compared with

simple approximation and Miles’ asymptotic result.

(say, larger than 0.01), converged shapes are obtained with much lower truncation
orders.

Still dealing with the first sloshing mode, we illustrate in figure 3 the effect of
varying the draught-to-width ratio, by plotting the free surface profile for h/b = 1.0,
0.1, 0.01 and 0.001. A noteworthy result, already visible in figure 2, is that, as h/b
decreases to zero, the point of maximum elevation moves away from the wall.

Figure 4 shows the variation of the natural frequency with the h/b ratio, compared
to the ‘single mode approximation’ (23). It can be seen that the agreement is fairly
good.

We now consider the mode number 2, which is symmetric and weakly coupled with
the piston mode (m = 0). To be able to make comparisons with Miles’ results we
must let H/b go to infinity, and h/b go to zero. This is illustrated in figure 5, which
shows the natural frequency of the second mode (still in the form ω2

2 b/(2g)), for
h/b = 0.0001, versus 1/ ln (H/b). Miles’ result is 3.453335. Ours do converge toward
3.453.

Lastly we give some results for the piston mode. This requires making a choice for
H/b. The original barge design has a beam (60 m) equal to three times the width of
the moonpool. Calculations made with a time domain panel code (Ch. Maisondieu
1999, personal communication) and experiments carried out in the ESIM wave tank
have shown that H must be taken as equal to about 1.5B for optimized agreement.
So we take H/b = 4.5.

In figure 6 we show free surface profiles, obtained with h/b = 1.0, 0.1, 0.01 and
0.001. As the draught-to-width ratio decreases the free surface becomes bumped in
the middle and lower on the sides.

As for the frequency, it turns out that the approximate expression (19) always
provides results within less than 1% of the exact values.
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Figure 5. Two-dimensional case. Mode 2. Natural frequency ω2
2 b/(2g) versus the position of the

two sinks.
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Figure 6. Two dimensional case. Piston mode. Free surface profiles for different draught/width
ratios.
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3. Three-dimensional case
3.1. Theory

We now proceed to the three-dimensional case of a rectangular moonpool with
length l, width b and draught h. We assume the beam and length of the barge to
be infinite, the barge being motionless, so that, as argued in the Introduction, the
velocity potential Φ+ inside the moonpool satisfies the boundary condition at z = 0

Φ+(x, y, 0, t) =
1

2 π

∫ l

0

dx′
∫ b

0

dy′
Φ+
z (x′, y′, 0, t)√

(x− x′)2 + (y − y′)2
(2)

(the coordinate system being centred at one of the lower corners).
Unlike with the two-dimensional case there is no problem of the pressure being

singular at infinity.
We follow the same resolution method as in the two-dimensional case. We look for

Φ+ in the form

Φ+(x, y, z, t) = Re {ϕ(x, y, z) e−iω t}

ϕ =

∞∑
n=0

∞∑
q=0

cos λn x cos µq y (Anq cosh νnq z + Bnq sinh νnq z) (26)

where λn = nπ/l, µq = qπ/b, ν2
nq = λ2

n + µ2
q , and, when n = q = 0, the hyperbolic

functions are replaced with A00 + B00z/h.
The Laplace equation and the no-flow conditions at the vertical walls are fulfilled.

There only remains the bottom boundary condition (2) and the free surface equation
(9).

We use the same Galerkin procedure: we insert (26) into the bottom boundary
condition, multiply each side with cos λmx cos µpy and integrate in x and y over the
bottom. This procedure requires the evaluation of the integrals

Imnpq =

∫ l

0

dx

∫ l

0

dx′
∫ b

0

dy

∫ b

0

dy′
cos λm x cos λn x

′ cos µp y cos µq y
′√

(x− x′)2 + (y − y′)2
(27)

which is presented in the Appendix, §A.2.
It turns out, again as expected from geometric considerations, that Imnpq is non-zero

only when both m + n and p + q are even. This means that four types of resonant
modes can appear:

(i) m, n, p, q all even: the modes are symmetric both in x and y. This is the case
of the piston mode.

(ii) m and n odd, p and q even: the modes are antisymmetric in x and symmetric
in y. This is the case of the longitudinal sloshing modes.

(iii) m and n even, p and q odd: this is the same as case (ii) with the x and y
coordinates interchanged. This is the case of the transverse sloshing modes.

(iv) m, n, p, q all odd: the modes are antisymmetric both in x and y. They can
be excited by the yaw motion of the barge. They have not been considered in this
analysis.

Since the numerical evaluation of the Imnpq coefficients is somewhat time consuming,
and the size of the final system can be quite large, the two cases n and q both even, n
odd and q even, have been separated from the start in the resolution, which follows
closely the two-dimensional one (so it is no longer detailed here).
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3.2. Single mode approximations

When truncation orders N and Q have been specified, the eigenvalue problem can be
exactly solved and the natural frequencies are obtained. As in the two-dimensional
case, it turns out that good approximations of these frequencies are obtained when
only one term of the development is retained: n = q = 0 for the piston mode, n = 1
(or 2, 3, etc.), q = 0 for the longitudinal sloshing modes. Simple expressions can then
be derived.

Piston mode

Again this approximation means that we simulate the water inside the moonpool
as a solid body. The following expression is obtained for the natural frequency:

ω00 '
√

g

h+ b f3(b/l)
(28)

where

f3 =
1

π

{
sinh−1

(
l

b

)
+
l

b
sinh−1

(
b

l

)
+

1

3

(
b

l
+
l2

b2

)
− 1

3

(
1 +

l2

b2

)√
b2

l2
+ 1

}
(29)

(see the Appendix, §A.2.1).
The quantity ρ b2 l f3(b/l) can be interpreted as the zero-frequency limit of the

heave added mass of a flat plate of length l and breadth b at the free surface. As l
increases to infinity, b and h being kept constant, f3 also increases to infinity and the
frequency becomes nil. So the two-dimensional situation is asymptotically recovered:
there can be no piston mode in two dimensions unless some tricks are applied to
simulate the outer free surface.

Longitudinal sloshing modes

One obtains the same kind of expression as in two dimensions:

ω2
n0 ' g λn 1 + Jn0 tanh λn h

Jn0 + tanh λn h
(30)

where

Jn0 =
n

b l2

∫ b

0

dy

∫ b

0

dy′
∫ l

0

dx

∫ l

0

dx′
cos λn x cos λn x

′√
(x− x′)2 + (y − y′)2

=
n

b l2
Inn00.

Jn0 can be expressed as (see the Appendix, §A.2.2)

Jn0 =
2

n π2 r

{∫ 1

0

r2

u2
√
u2 + r2

[
1 + (u− 1) cos (nπ u)− sin (n π u)

n π

]
du+

1

sin θ0

− 1

}
(31)

where r = b/l and tan θ0 = r−1.
Figure 7 shows Jn0, versus λn b = n π b/l, for n = 1, 2, 4, 10. It appears again that Jn0

is always less than 1 (and it can be checked, at least numerically, that when λnb goes
to infinity, the two-dimensional Jn functions are recovered). Hence one can introduce
βn0 such that

Jn0 = tanh βn0
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Figure 7. Three-dimensional case. Longitudinal sloshing modes. Functions Jn0(λnb)
for n = 1, 2, 4 and 10.

which leads to the dispersion equation

ω2
n0 ' g λn coth [λn h+ βn0(λn b)] . (32)

From figure 7 it appears that, when λnb goes to zero, so do Jn0 and βn0. Hence very
high values of ωn0 can be obtained when both the draught h and the breadth b are
small compared to the length l of the moonpool.

Another result that is readily obtained from the approximations (28) and (32) is
that the natural frequency of the piston mode is always less than the frequency of the
first sloshing mode, whatever the length, width and draught of the moonpool.

3.3. Results

It is impractical to try to give results for all the ranges of the geometric parameters
l/b and h/b. Therefore we select three values of the ‘aspect ratio’ l/b of the moonpool:
l/b = 1, l/b = 4 (the original barge case) and l/b = 16, and we vary h/b from 0 to 1.

First we give results for the natural frequency of the piston mode. They are shown
in figure 8, where ω2

00 h/g is given as a function of h/b, for the three aspect ratios
l/b, according to the approximation (28) and after solving the eigenvalue problem.
The truncation orders N and Q of the double series are given in the figure. It can
be observed, again, that the two sets of values agree closely. The natural frequency
is lowest for the most elongated moonpool, due to the increase of the added mass
coefficient f3 with the aspect ratio l/b.

Figure 9 gives similar results for the first longitudinal sloshing mode, with the dif-
ference that the frequency ω10 is given in the form ω2

10 l/(π g) which has an asymptotic
value of one as h/l or b/l increases. The agreement between the approximate values
provided by equation (32) and the exact ones is rather good, except at the very low
values of h/b, for the most elongated moonpool. In this latter case, the parameter
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Figure 8. Three-dimensional case. Piston mode. Natural frequency ω2
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Figure 10. Three-dimensional case. Piston mode. Free surface shape for l = b = 40h.

Figure 11. Three-dimensional case. First longitudinal sloshing mode. Free surface shape for
l = 160h, b = 10h.

ω2
10 l/(π g) reaches values as high as 5.6, meaning a natural frequency 2.4 times higher

than the deep draught (or large width) limit.
The following figures provide some three-dimensional views of the free surface at

resonance, the draught h being taken as h =
√
b l/40. This shallow case is chosen to

enhance the deviations from pure sinusoidal shapes (or flat shapes, in the case of the
piston mode), while convergence can still be attained at not too high values of the
truncation orders N and Q.

Figure 10 shows the piston mode in the square moonpool. To obtain this shape the
double series was truncated at N = Q = 22. The maximum elevation, in the middle, is
1.23. The minimum elevation is 0.66, in the corners. These values relate to an average
of one over the moonpool.

Figure 11 shows the first longitudinal sloshing mode in the most elongated moon-
pool. The double series was truncated at N = 63 and Q = 6. Because of lateral
confinement the free surface is nearly straight in the transverse direction. But it is
quite distorted longitudinally: deviations from a pure sinusoidal shape are actually
greater than what the two-dimensional analysis would yield for a moonpool of same
length over height ratio.

Finally, in the intermediate moonpool, figure 12 shows the first transverse sloshing
mode (obtained with N = 10 and Q = 35). It can be observed that the amplitude
of the sloshing motion varies strongly along the length. In the centre it is about 3.5
greater than at the endwalls! This means that a two-dimensional approach is not
altogether appropriate to study the transverse sloshing modes: it provides the correct
frequency but it cannot give the amplitude.
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Figure 12. Three-dimensional case. First transverse sloshing mode. Free surface shape
for l = 80h, b = 20h.

4. The dispersion equation for progressive waves in a channel through an
ice sheet

We now move on to the simpler case of a moonpool with no endwalls, equivalent
to a channel through a rigid ice sheet. We consider progressive waves travelling along
the channel, with wavenumber k0, and we seek to express their frequency. We apply
the same method as in the finite moonpool case, the only difference being that we
start from the expression, for the velocity potential inside the channel,

ϕ(x, y, z) = ei k0 x

N∑
n=0

cos µny (An cosh νnz + Bn sinh νnz), (33)

with

Φ+(x, y, z, t) = Re {ϕ(x, y, z) e−iω t}.
Here µn = nπ/b, ν2

n = k2
0 + µ2

n. Only even values of n are retained, since we are only
interested in symmetric solutions.

The same boundary condition (2) applies at z = 0, giving

ei k0 x
∑
n

cos µny An =
1

2π

∫ ∞
−∞

dx′
∫ b

0

ei k0 x
′

∑
n νn cos µny

′Bn√
(x− x′)2 + (y − y′)2

dy′

or, setting x′ = x+ u:∑
n

cos µny An =
1

2π

∫ ∞
−∞

du

∫ b

0

ei k0 u

∑
n νn cos µny

′Bn√
u2 + (y − y′)2

dy′. (34)

Multiplying both sides with cos µm y and integrating in y from 0 to b gives

Am =
1

πb(1 + δm0)

∑
n

νnBnĨmn (35)

with

Ĩmn =

∫ ∞
−∞

du

∫ b

0

dy

∫ b

0

dy′ ei k0 u
cos µmy cos µny

′√
u2 + (y − y′)2

. (36)

The calculation of Ĩmn is given in the Appendix, §A.3.
Again, together with the free surface condition, an eigenvalue problem can be set

to obtain the frequencies ωn and associated free surface shapes. The case when A0

and B0 are dominant over the other coefficients corresponds to waves travelling along
the channel, the other cases to waves that are both progressive and reflecting on the
sides. We are not interested in the latter and we only consider the inline case.
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Figure 13. Channel through the ice sheet. Function J̃0(k0 b) compared with the functions Jn0(λn b).

Most likely, as in the longitudinally restricted case, a good approximation of the
frequency ω0 of the inline mode can be obtained by retaining only A0 and B0, setting
all other coefficients equal to zero. We get

ω2
0 ' g k0

1 + J̃0 tanh k0h

J̃0 + tanh k0h

where

J̃0(k0b) =
k0b

2π

∫ ∞
−∞

du

∫ 1

0

dy

∫ 1

0

dy′
ei k0b u√

u2 + (y − y′)2
=

k0

2πb
Ĩ00. (37)

It is shown in the Appendix, §A.3 that J̃0(k0b) can be evaluated as

J̃0(k0b) = 1− 2

π k0b

(
1−

∫ 1

0

e−k0b (1−u2)−1/2

du

)
. (38)

J̃0 is shown in figure 13, together with the functions Jn0, n = 1, 2, 10, derived in § 2. It
turns out to be the limiting case of Jn0(λnb) when n goes to infinity. The approximate
dispersion equation can again be put in the form

ω2
0 ' g k0 coth[k0 h+ β̃0(k0 b)] (39)

where J̃0(k0b) = tanh (β̃0).
To present results we first select three draught-to-width ratios: h/b = 0.01, h/b =

0.10, h/b = 1.00, and we vary k0 b from 0 to 5. The natural frequency is obtained by
solving the eigenvalue problem (with a truncation order N equal to 40), and by using
the approximation (39). Figure 14 shows the results obtained, the frequency being
given in the form

√
g k0/ω0: it is the ratio of the phase velocity of the waves in an
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Figure 15. Channel through the ice sheet. Transverse cuts of the free surface envelope for
k0 b = 10 and different h/b ratios.

unbounded ocean to the phase velocity of the waves inside the channel. When the
wavelength becomes large compared both to the width b and to the draught h, the
phase velocity ratio goes to zero, meaning that the waves in the channel travel faster
and faster. From the figure it can also be observed that the agreement between the
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Figure 16. Channel through the ice sheet. Transverse cuts of the free surface envelope for
h/b = 0.01 and different k0 b values.

approximate dispersion equation and the exact one is quite good, except for a very
slight deviation when h/b is very small and k0b is large.

We finally present results for the free surface profile. The linear system giving the
An and Bn coefficients is real, so the complex An and Bn coefficients have the same
arguments. This means that the wave crests remain straight, perpendicular to the
x-axis.

Figure 15 shows transverse cuts of the free surface envelope, obtained for k0 b = 10
and the same values of h/b as in the previous figure. The truncation order has been
moved up to 80. At h = b, as expected, the envelope profile is a straight line: the wave
amplitude is constant over the width. At h/b = 0.10 there is a weak modulation of
the amplitude. At h/b = 0.01, the wave amplitude gets much larger at the centreline
(nearly 1.4 times the average value) while it drops to less than 0.4 the average value
along the walls.

Finally figure 16 shows similar cuts for three different values of k0 b (10, 1 and 0.1),
while the ratio h/b is kept constant at 0.01. The amplitude modulation along the cut
is greatest for the shortest waves.

5. Discussion and conclusion
The most remarkable result obtained in this analysis is the increase in frequency of

the longitudinal sloshing modes as the width and draught of the moonpool become
smaller. This phenomenon is associated with the fluid motion that takes place beneath
the hull. An interpretation, based on energy considerations, is as follows.

Let us first consider a closed rectangular tank with finite depth h. According to
linearized potential flow theory, the free surface elevation associated with the sloshing
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mode n is

η = A cos λnx cosωnt (40)

where λn = nπ/l, ω2
n = gλn tanh λnh.

The velocity potential is

Φ(x, y, z, t) = −Ag
ωn

cosh λn z

cosh λn h
cos λnx sinωnt (41)

and the longitudinal and vertical components of the fluid velocity:

u = A
√
g λn

√
coth λnh

cosh λnz

cosh λnh
sin λnx sinωnt, (42)

w = −A√g λn√tanh λnh
sinh λnz

sinh λnh
cos λnx sinωnt. (43)

The potential and kinetic energies are given by

EP =
1

2
ρ g

∫ ∫
SF

η2 dS =
1

2 g
ρ

∫ ∫
SF

Φ2
t dS, (44)

EK =
1

2
ρ

∫ ∫ ∫
V

(∇Φ)2 dV =
1

2
ρ

∫ ∫
SF

ΦΦz dS = − 1

2 g
ρ

∫ ∫
SF

ΦΦtt dS (45)

where V is the fluid domain and SF the mean free surface z = h.
As a result the potential and kinetic energies are independent of the depth h:

EP = 1
4
ρ g b l A2 cos2 ωnt, (46)

EK = 1
4
ρ g b l A2 sin2 ωnt (47)

(so that the total energy remains constant).
When the depth h decreases there is less fluid to participate in the kinetic energy

and, moreover, the vertical component of the velocity, given by (43), becomes smaller
by the factor

√
tanh λnh, due to the decrease of the frequency ωn. However the

horizontal motion of the fluid particles increases by the factor coth λnh, and hence the
horizontal velocity by the factor

√
coth λnh, so that the kinetic energy is maintained.

It is quite remarkable that the increase of the horizontal velocity is associated with a
decrease of the frequency.

In the moonpool case equations (44)–(47) giving the potential and kinetic energies
still hold, under the ‘single mode approximation’. But there is now, in the small
draught and small width case, too much fluid to participate in the kinetic energy,
because of the additional fluid region beneath the hull. The way to preserve the
energy balance now is to reduce the horizontal component of the velocity, by the
factor

√
tanh (λn h+ βn0), with the associated result that the frequency increases.

In fact the single mode approximation means that the velocity potential of the
sloshing flow, inside the moonpool, is given by

Φ+
n0(x, y, z, t) ' −An0 gωn0

sinh (λn z + βn0)

sinh (λn h+ βn0)
cos λn x sinωn0 t. (48)

Similar effects are found with the waves travelling in the ice-channel. The horizontal
component of the fluid particle motion decreases compared with the vertical one and
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the velocity potential of the flow within the channel is approximately given by

Φ+(x, y, z, t) =
Ag

ω0

sinh (k0 z + β̃0)

sinh (k0 h+ β̃0)
sin (k0 x− ω0 t). (49)

In this case we have obtained that the crest lines remain straight, because we have
assumed the channel to be infinitely long. One may wonder what would happen at
the mouth of the channel as the wave system propagates into it. Most probably the
waves would be accelerated along its edges and the crest lines would first bend.

A related problem that would be worth considering is the floating dock, where the
waves travelling along its edges should also lengthen, with the result that the crest
lines would bend and that the wave energy flux would tend to diverge away from the
edges.

Finally some mention should be made of the relevance of all these results for the
original problem, of a barge of finite beam and length with a moonpool inside. In
the designs considered, the beam is about three times the moonpool width and the
length of the barge varies from two to four times the length of the moonpool, so it
may be questioned whether the infinite beam and length assumption is applicable.
The natural frequencies of the piston and antisymmetric sloshing modes appear very
precisely as peaks in the damping coefficients calculated with diffraction radiation
codes. They were found to agree very well with the values delivered by the simple
formulae (28) and (32), which are therefore quite helpful for engineering studies.

The author is grateful to D. V. Evans who brought to his attention the works of
B. A. Troesch and of his coworkers, and of J. W. Miles. This work was partly carried
out within an industrial project, led by Bouygues Offshore. Other partners in the
project are Elf E. P., IFP, Ifremer, Principia and Sedco Forex.

Appendix A. Evaluation of integrals
A.1. Two-dimensional case

The integral

Imn =

∫ π

0

du

∫ π

0

dv cosmu cos nv ln |u− v|
needs to be evaluated, where m and n are integers, at least one of them non-zero.

Making use of

ln |u− v| = lim
ε→0

[
ln ε+

∫ ∞
0

dk

k
e−k ε [1− cos k (u− v)]

]
,

the u and v integrations are easily performed, then ε is set equal to zero, to obtain

Imn = −2

∫ ∞
0

k [1− (−1)m cos kπ]

(k2 − m2) (k2 − n2)
dk

for m+ n even and Imn = 0 for m+ n odd.
This expression can be transformed by integration around the first quadrant of

the complex plane, along the positive real semi-axis (with indentations around the
two poles), one quarter of a remote circle, and back to the origin along the positive
imaginary semi-axis, to obtain

Imn =
2

m2 − n2
(lnm− ln n)− 2 (−1)m

∫ ∞
0

y e−π y

(y2 + m2) (y2 + n2)
dy for m 6= n m, n 6= 0,
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Im0 = 2

∫ 1

0

1− e−π y

y (y2 + m2)
dy − 2

∫ ∞
1

e−π y

y (y2 + m2)
dy +

1

m2
ln (1 + m2) for n = 0,

Imm =
1

m2
[1− (−1)m]− π2

2m
+ (−1)m π

∫ ∞
0

e−π y

y2 + m2
dy for n = m.

A.2. Three-dimensional case

The integral

Imnpq =

∫ l

0

dx

∫ l

0

dx′
∫ b

0

dy

∫ b

0

dy′
cos λmx cos λnx

′ cos µpy cos µqy
′√

(x− x′)2 + (y − y′)2

needs to be evaluated.

A.2.1. Case m = n = p = q = 0

For this case

I0000 =

∫ ∫
S

∫ ∫
S

1

PQ
dSP dSQ.

Making use of the identity (in two dimensions)

1

PQ
= divQ

PQ

PQ
,

we obtain

I0000 =

∫ ∫
S

dSP

{∫
C

PQ

PQ
· nQ dlQ

}
= −

∫
C

nQ dlQ ·
∫ ∫

S

QP

QP
dSP

where C is the perimeter and nQ the outer normal vector in Q.
Making use now of

QP

QP
= ∇P QP ,

we obtain

I0000 = −
∫
C

nQ dlQ ·
∫
C

QP nP dlP = −
∫
C

∫
C

PQ nP · nQ dlP dlQ.

Finally, for a rectangular shape

I0000 = −2

∫ l

0

∫ l

0

(
|x− x′| −√(x− x′)2 + b2

)
dx dx′

−2

∫ b

0

∫ b

0

(|y − y′| −√(y − y′)2 + l2) dy dy′,

which gives

I0000 = 2 b2 l sinh−1

(
l

b

)
+ 2 b l2 sinh−1

(
b

l

)
+ 2

3
(b3 + l3)− 2

3
(b2 + l2)3/2.

A.2.2. Other cases

Making use of the identity

1√
(x− x′)2 + (y − y′)2

= lim
ε→0

1

π
Re

{∫ π/2

−π/2
dθ

∫ ∞
0

dk e−k ε ei k [(x−x′) cos θ+(y−y′) sin θ]

}
,
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one obtains the sextuple integral

Imnpq = lim
ε→0

1

π
Re

{∫ π/2

−π/2
dθ

∫ ∞
0

dk e−k ε
∫ l

0

dx

∫ l

0

dx′

×
∫ b

0

dy

∫ b

0

dy′ cos λmx cos λnx
′ cos µpy cos µqy

′ ei k [(x−x′) cos θ+(y−y′) sin θ]

}
.

The integrations in x, x′, y, y′ are performed easily, by setting x = u l/π, x′ = u′ l/π,
y = v b/π, y′ = v′ b/π. We obtain∫ π

0

cosmu ei (kl/π) u cos θ du = i
π k l cos θ

π2m2 − k2l2 cos2 θ
[(−1)m ei kl cos θ − 1]

and similar expressions for the u′, v and v′ integrations. One obtains finally

Imnpq =
8 b4 l4

π

∫ π/2

0

dθ

∫ ∞
0

dk k4 cos2 θ sin2 θ

× 1− (−1)m cos (kl cos θ)

(π2 m2 − k2 l2 cos2 θ) (π2 n2 − k2 l2 cos2 θ)

× 1− (−1)p cos (kb sin θ)

(π2 p2 − k2 b2 sin2 θ) (π2 q2 − k2 b2 sin2 θ)

when m+ n and p+ q are both even. Imnpq is zero in the other cases.
The double integration can easily be carried out numerically. One may also perform

the k integral via the residue theorem, the drawback being that many different cases
must be distinguished, depending on whether m and n on one side, p and q on the
other, are zero or equal or different. So the residue theorem was applied only in the
cases m 6= n, p 6= q, m, n, p, q 6= 0, and m = n 6= 0, p = q = 0, the latter yielding the Jn0
functions. It is described below. In the other cases Imnpq is calculated via the double
integration.

A.2.3. Calculation of Imm00 via the residue theorem

We further assume m to be odd (the same final result is obtained with m even). The
double integral to evaluate is

Imm00 =
8

π
l4
∫ π/2

0

cos2 θ

sin2 θ
dθ

∫ ∞
0

[1− cos (kb sin θ)] [1 + cos (k l cos θ)]

(m2 π2 − k2 l2 cos2 θ)2
dk

or, setting k l cos θ = x and r = b/l:

Imm00 =
8

π
l3
∫ π/2

0

cos θ

sin2 θ
dθ

∫ ∞
0

[1− cos (x r tan θ)] [1 + cos x]

(m2 π2 − x2)2
dx.

Take

I =

∫ ∞
0

[1− cos (x r tan θ)] (1 + cos x)

(m2 π2 − x2)2
dx.

It can be written

I =
1

2
Re

{∫ ∞
−∞

1 + ei x − ei r tan θ x − 1
2

ei (r tan θ+1) x − 1
2

ei |r tan θ−1| x

(m2 π2 − x2)2
dx

}
.
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The contribution of a remote semi-circular contour in the upper half-plane is zero.
Hence I is equal to iπ, the sum of the two residues in ±m π. We obtain∫ ∞

0

[1− cos (x r tan θ)] [1 + cos x]

(m2 π2 − x2)2
dx =

1

4m2 π
f(r, m, θ)

where

f(r, m, θ) = 1 for r tan θ > 1,

f(r, m, θ) = 1 + (r tan θ − 1) cos (m π r tan θ)− sin (m π r tan θ)

m π
for r tan θ < 1.

To perform the θ integration we introduce θ0 such that θ0 = arctan (l/b). Imm00 is
finally obtained as

Imm00 =
2 l3

m2 π2

{∫ θ0

0

cos θ

sin2 θ

[
1 + (r tan θ − 1) cos (m π r tan θ)− sin (m π r tan θ)

m π

]
dθ

+

∫ π/2

θ0

d(sin θ)

sin2 θ

}
.

That is, setting r tan θ = u

Imm00 =
2 l3

m2 π2

{∫ 1

0

r2

u2
√
u2 + r2

[
1 + (u− 1) cos (m π u)− sin (m π u)

m π

]
du+

1

sin θ0

− 1

}
.

A.3. Ice channel

The integral

Ĩmn =

∫ ∞
−∞

du

∫ b

0

dy

∫ b

0

dy′ ei k0 u
cos µmy cos µny

′√
u2 + (y − y′)2

needs to be evaluated, where m and n are both even.

Setting u = bU, y = bY , y′ = bY ′, we obtain:

Ĩmn = b2

∫ ∞
∞

dU

∫ 1

0

dY

∫ 1

0

dY ′ ei k0 bU
cosmπY cos nπY ′√
U2 + (Y − Y ′)2

.

First the U integral is considered. It is transformed via integration in the upper
half of the complex plane, with a cut from the branch point z = i |Y − Y ′| up the
imaginary axis. We obtain

Ĩmn = 2 b2

∫ 1

0

dY

∫ 1

0

dY ′
∫ ∞
|Y−Y ′ |

dV e−k0 bV
cosmπY cos nπY ′√
V 2 − (Y − Y ′)2

or, setting V = |Y − Y ′| coshψ:

Ĩmn = 2 b2

∫ ∞
0

dψ

∫ 1

0

dY

∫ 1

0

dY ′ e−k0 b |Y−Y ′ | coshψ cosmπY cos nπY ′.
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The Y and Y ′ integrations are now performed. We obtain, after some algebra∫ 1

0

dY

∫ 1

0

dY ′ e−α |Y−Y
′ | cos mπY cos nπY ′

=
α δmn(1 + δm0)

m2 π2 + α2
− 2

α2 (1− e−α)
(m2 π2 + α2) (n2 π2 + α2)

(m and n being both even).
Putting back α = k0 b coshψ, the ψ integration of the first term in the above

expression is straightforward. Taking finally u = tanhψ as the integration variable,
we obtain

Ĩmn =
b2 π δmn (1 + δm0)√

k2
0 b

2 + m2 π2
− 4 k2

0 b
4

×
∫ 1

0

1− e−k0 b/
√

1−u2

(k2
0 b

2 + m2 π2 − m2 π2 u2) (k2
0 b

2 + n2 π2 − n2 π2 u2)
du.
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